top of page

           

​

2024:

66. "Small molecules for impairing endoplasmic reticulum in cancer" T. Mishra, N. Dubey, S. Basu* Org. Biomol. Chem., 2024,22, 8689-8699.

65. "Imaging Golgi-Apparatus in Colon Cancer Cells by Small Molecule Hydrazone Fluorophore" AditiSanyamJ. IngleB. DasA. Mondal*, S. Basu*, ChemBioChem, 2024, 25, e202400507.

64. "Detouring NSAID into mitochondria to induce apoptosis in cancer cells", T. MishraA. Goswami, A. BajpaiS. Basu* Chem Asian J. 2024, in press. https://doi.org/10.1002/asia.202400732

63. "Detouring Self-Assembled 3-Methoxy-pyrrole-Based Nanoparticles into Mitochondria to Induce Apoptosis in Lung Cancer Cells" J. Ingle, T. Mishra, A. Sahu, A. Tirkey, S. Basu*, ACS Appl. Bio Mater. 2024, 7, 8, 5076–5081.

62. "Biomaterials for Targeting Endoplasmic Reticulum in Cancer" T. Mishra, P. Sengupta*, S. Basu*, Chem Asian J. 2024, 19, e202400250.

61. "Chimeric Small Molecules for Detouring Drugs into Mitochondria to Engender Apoptosis in Cancer Cells" T. Mishra, A. Gautam, J. Ingle, S. Basu*, ChemBioChem, 2024,25, e202300603.

 

2023:      

60. "Small-Molecule Endoplasmic Reticulum Stress Inducer Triggers Apoptosis in Cancer Cells" J. Ingle, A. Tirkey, S. Pandey, S. Basu*, ChemMedChem, ChemMedChem 2023, 18, e202300433.

59. "Dog-bone shaped gold nanoparticle-mediated chemo-photothermal therapy impairs the powerhouse to trigger apoptosis in cancer cells" J. Ingle, B. Uttam, R. Panigrahi, S. Khatua*, S. Basu*, J. Mater. Chem. B, 2023, 11, 9732-9741.

58. “3-Methoxy-Pyrrole-Based Small Molecule Damages Mitochondria to Instigate Apoptosis in Breast Cancer Cells” J. Ingle, S.Tat, S. Shinde, M. Kumar, Sanyam, A. Mondal, M. K. Santra*, S. Basu*, ChemistrySelect 2023, 8, e202300663.

57. “Small Molecule AIEgens for Illuminating Sub-Cellular Endoplasmic Reticulum, Mitochondria and Lysosomes” J. Ingle, B. Das, K. Chaudhary, A. Mondal, S. Basu*, ChemBioChem, 2023, 24, e202300379.

56. "Mitochondria Targeted AIE Probes for Cancer Phototherapy" J. Ingle, S. Basu* ACS Omega, 2023, 8, 10, 8925–8935.

55. "Illuminating Sub-Cellular Organelles by Small Molecule AIEgens"  J. Ingle, P. Sengupta, S. Basu* ChemBioChem, 2023, 24, e202200370.   

​

2022:

54. "Small molecule induces mitochondrial impairment in colon cancer cells" S. Shinde, D. Chhabria, J. Ingle, M. Kumar, S. Kirubakaran, S. Basu*, New J. Chem., 2022, 46, 22117.      

53. "Small Molecule NSAID Derivatives for Impairing Powerhouse in Cancer Cells" A. Bajpai, Deepshikha, D. Chhabria, T. Mishra, S. Kirubakaran, S. Basu*, Bioorg. Med. Chem., 2022, 64, 116759.

52. "γ-Resorcyclic Acid-Based AIEgens for Illuminating Endoplasmic Reticulum" J. Ingle, H. Dedaniya, C. Mayya, A. Mondal, D. Bhatia, S. Basu*, Chem. Euro. J., 2022, 28, e202200203 (Hot Paper).

51. "Chimeric nanoparticles for targeting mitochondria in cancer cells" A. Bajpai, N. N. Desai, S. Pandey, C. Shukla,  B. Datta, S. Basu* Nanoscale Adv., 2022, 4, 1112-1118. (Highlighted in Current Science: https://www.currentscience.ac.in/Volumes /122/04/0376.pdf)

        

2021:            

50. "Nanobiomaterials for drug delivery and theranostics" A. Bajpai, S. Shinde, S. Basu*, "Nanotechnology in Medicine and Biology", 2021, Elsevier, ISBN: 978-0-12-819469-0, Chapter 2, Page 25-56. (Book Chapter)

49. "Nanoparticle-Mediated Routing of Antibiotics into Mitochondria in Cancer Cells", A. Bajpai, N. N. Desai, S. Pandey, C.  Shukla, B. Datta*, S. Basu*, ACS Appl. Bio Mater. 2021, 4, 6799-6806.

48. "Small molecule-mediated induction of endoplasmic reticulum stress in cancer cells"  S. Pandey, V. K. Sharma, A. Biswas, M. Lahiri, S. Basu*, RSC Med. Chem., 2021, 12, 1604-1611.         

​

2020:

47. "Inducing Endoplasmic Reticulum Stress in Cancer Cells by Graphene Oxide-Based Nanoparticles" S. Pandey, A. Nandi, S. Basu*, N. Ballav*, Nanoscale Adv., 2020, 2, 4882-4894.

46. "Spatial targeting of Bcl-2 on endoplasmic reticulum and mitochondria in cancer cells by lipid nanoparticles" S. Pandey, S. Patil, N. Ballav, S. Basu*, J. Mater. Chem. B, 2020, 8, 4259-4266.

45. "Mitochondrial Impairment by Cyanine-Based Small Molecules Induces Apoptosis in Cancer Cells", S. Patil, D. Ghosh, M. Radhakrishna, S. Basu*, ACS Med. Chem. Lett., 2020, 11, 23-28. (Highlighted as Cover Page).       

 

2019:

44. "Polymer conjugated graphene-oxide nanoparticles impair nuclear DNA and Topoisomerase I in cancer", A. Nandi, C.  Ghosh,  S. Basu*, Nanoscale Adv. 2019, 1, 4965-4971.

43. "SCAN1-TDP1 trapping on mitochondrial DNA promotes mitochondrial dysfunction and mitophagy", A. Ghosh, S. Bhattacharjee, S. P. Chowdhuri, A. Mallick, I. Rehman, S. Basu, B. B. Das, Sci. Adv. 2019, 5, eaax9778.

42. "Lipid Nanoparticle-Mediated Induction of Endoplasmic Reticulum Stress in Cancer Cells" C. Ghosh, A. Nandi, S. Basu* ACS Appl. Bio Mater, 2019, 2, 3992-4001.

41. "Graphene oxide nanocell for impairing topoisomerase and DNA in cancer cells" A. Nandi, C. Ghosh, A. Bajpai, S. Basu* J. Mater. Chem. B. 2019, 7, 4191-4197.

40. "Hydrazide–Hydrazone Small Molecules as AIEgens: Illuminating Mitochondria in Cancer Cells" S. Patil, S. Pandey, A. Singh, M. Radhakrishna, S. Basu* Chem. Euro. J. 2019, 25, 8229-8235. (Hot paper).

39. "Supramolecular self-assembly of triazine-based small molecule: targeting endoplasmic reticulum in cancer cells" C. Ghosh, A. Nandi, S. Basu*  Nanoscale, 2019, 11, 3326-3335.

38. "Polyethylenimine Coated Graphene Oxide Nanoparticles for Targeting Mitochondria in Cancer Cells" A. Mallick, A. Nandi, S. Basu* ACS Appl. Bio Mater. 2019, 2, 14-19.     

 

2018:

37.Impairing the Powerhouse in Colon Cancer Cells by Hydrazide-hydrazone based Small Molecule” S. Patil, M. M. Kuman, S. Palvai, P. Sengupta, S. Basu* ACS Omega, 2018, 3, 1470-1481.

36.Iron-Catalyzed Batch/Continuous Flow C-H Functionalization Module for the Synthesis of Anticancer Peroxides” M. B. Chaudhari, S. Moorthy, S. Patil, G. S. Bisht, H. Mohamed, S. Basu, B. Gnanaprakasam* J. Org. Chem. 2018, 83, 1358-1368.

35. "Cerberus Nanoparticles: Cotargeting of Mitochondrial DNA and Mitochondrial Topoisomerase I in Breast Cancer Cells" A. Mallick, M. M. Kuman, A. Ghosh, B. B. Das, S. Basu*  ACS Appl. Nano Mater 2018, 1, 2195−2205.

34. "Self-Assembled Glycosylated-Chalcone-Boronic-Acid Nano-Drug Exhibits Anticancer Activity through Mitochondrial Impairment" C. Ghosh, N. Gupta, A. Mallick, M. K. Santra,* S. Basu* ACS Appl. Bio Mater 2018, 1, 347-355

 

2017:

33.Hyaluronic Acid Layered Chimeric Nanoparticle: Targeting MAPK-PI3K Signalling Hub in Colon Cancer Cells” S. Palvai, M. M. Kuman, P. Sengupta, S. Basu* ACS Omega, 2017, 2, 7868-7880.

32.Drug-Triggered Self-Assembly of Linear Polymer into Nanoparticle for Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs in Breast Cancer” S. Palvai, L. Anandi, S. Sarkar, M. Augustus, S. Roy, M. Lahiri*, S. Basu* ACS Omega, 2017, 2, 8730-8740.

31.Hyaluronic acid cloaked oleic acid nanoparticle inhibits MAPK signaling with sub-cellular DNA damage in colon cancer” S. Palvai, M. M. Kuman, S. Basu* J. Mater. Chem. B. 2017, 5, 3658-3666.

30.Cisplatin-induced self-assembly of graphene oxide sheets into spherical nanoparticles for damaging sub-cellular DNA” A. Nandi, A. Mallick, P. More, P. Sengupta, N. Ballav, S. Basu* Chem. Commun. 2017, 53, 1409-1412.

29.Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework” A. Karmakar, B. Joarder, A. Mallick, P. Samanta, A. V. Desai, S. Basu, S. K. Ghosh* Chem. Commun., 2017, 53, 1253-1256.

28.Electrostatically driven resonance energy transfer in “cationic” biocompatible indium phosphide quantum dots” G. Devatha, S. Roy, A. Rao, A. Mallick, S. Basu, P. P. Pillai* Chem. Sci., 2017, 8, 3879-3884.

 

2016:

27.Self-Assembled Oleic Acid Nanoparticle for Targeting Mitogen-Activated Protein Kinase Signalling and Damaging DNA in  Cancer Cells” Palvai, S.; More, P.; Mapara, N.; Nagraj, J.; Chowdhury, R.; Basu, S.* ChemNanoMat, 2016, 2, 201-211.

26.Nanoparticle Mediated Targeting of Mitochondria Induces Apoptosis in Cancer Cells” Mallick, A.; More, P.; Syed, M. M. K.; Basu, S.* ACS Applied Materials Interfaces, 2016, 8, 13218−13231.

25.Engineering and In Vitro Evaluation of Acid Labile Cholesterol Tethered MG132 Nanoparticle for Targeting Ubiquitin- Proteasome System in Cancer” Ghosh. C.; Gupta, N.; More, P.; Sengupta, P.; Mallick, A.; Santra, M. N.*; Basu, S.* ChemistrySelect, 2016, 1, 5099-5106.

24.Loading of an anti-cancer drug into mesoporous silica nano-channels and its subsequent release to DNA” R. K. Koninti, S. Palvai, S. Satpathi, S. Basu, P. Hazra* Nanoscale, 2016, 8, 18436-18445.

23.Biological Activity of Coumarin Derivatives as Anti-Leishmanial Agents” V. Mandlik, S. Patil, R. Bopanna, S. Basu, S. Singh* PLoS One, 2016, 11, e0164585.

 

2015:

22. “Dual Drug Conjugated Nanoparticle for Simultaneous Targeting of Mitochondria and Nucleus in Cancer Cells” Mallick, A.; More, P.; Ghosh, S.; Chippalkatti, R.; Chopade, B. A.; Lahiri, M.; Basu, S.* ACS Appl. Mater. Interfaces, 2015, 7, 7584-7598.

21. “Biocompatible Vitamin D3 Nanoparticle in Drug Delivery” Palvai, S.; Basu, S.* 2015, Book chapter in Nano Based Drug Delivery, IAPC Publication, Zagreb, Croatia, ISBN: 978-953-56942-2-9, Chapter 16, Page 413-428.

20. “Chimeric Nanoparticle: A Platform for Simultaneous Targeting of Phosphatidyl-inositol-3-kinase Signalling and Damaging DNA in Cancer Cells” Palvai, S.; More, P.; Mapara, N.; Basu, S.* ACS Appl. Mater. Interfaces, 2015, 7, 18327–18335.

 

2014:

19.Dual drug loaded vitamin D3 nanoparticle to target drug resistance in cancer.” Palvai, S.; Nagraj, J.; Mapara, N.; Chowdhury, R.*; Basu, S.* RSC Adv. 2014, 4, 57271-57281.

 

2013:

18.Novel Self-Assembled Lithocholic Acid Nanoparticles for Drug Delivery in Cancer.” Patil, S.; Patil, S.; Gawali, S.; Shende, S.; Jadhav, S.; Basu, S.* RSC Adv. 2013, 3, 19760-19764.

17.Synthesis, characterization and in vitro evaluation of novel vitamin D3 nanoparticles as versatile platform for drug delivery in cancer.” Patil, S.; Gawali, S.; Patil, S.; Basu, S.* J. Mater. Chem. B, 2013, 1, 5742-5750.

 

 

 

Publications from PhD and Post-Doc

​

2014:

 

16. “Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery.” Pandey, A.; Sarangi, S.; Chien, K.; Sengupta, P.; Papa, A. L.; Basu, S.; Sengupta, S. Nanotechnology, 2014, 25, 445101. 

 

15.Polymer supported synthesis of a natural product-inspired oxepane library.” Basu, S.; Waldmann, H. Bioorg Med Chem. 2014, 22, 4430-4444.

 

14. “Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy.” Pandey, A.; Kulkarni, A.; Roy, B.; Goldman, A.; Sarangi, S.; Sengupta, P.; Phipps, C.; Kopparam, J.; Oh, M.; Basu, S.; Kohandel, M.; Sengupta, S. Cancer Res. 2014, 74, 675-685.

​

2013:

 

13. “Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy.” Kulkarni, A.*; Roy, B.; Rao, P. S.; Wyant, G. A.; Mahmoud, A.; Ramachandran, M.;  Sengupta, P.; Goldman, A.; Kotamraju, V. R.; Basu, S.*;  Mashelkar, R. A.; Ruoslahti, E.; Dinulescu, D. M.;  Sengupta, S.* Cancer Res. 2013, 73, 6987-6997.

 

12. “P2Y12 receptor inhibition augments cytotoxic effects of cisplatin in breast cancer.” Sarangi, S.;  Pandey, A.;  Papa, A. L.;  Sengupta, P.;  Kopparam, J.;  Dadwal, U.;  Basu, S.; S. Sengupta. Med. Oncol. 2013, 30, 567.

​

2012:

 

11. “Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells.” Papa, A. L.;  Basu, S.; Sengupta, P.; Banerjee, D.; Sengupta, S.; Harfouche, R. BMC Cancer, 2012, 12, 419.

 

10. “Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity.” Sengupta, P.; Basu, S.*, Soni, S.; Pandey, A.; Roy, B.; Oh, M. S.; Chin, K. T.; Paraskar, A. S.; Sarangi, S.; Connor, Y.; Sabbisetti, V. S.; Kopparam, J.; Kulkarni, A.; Muto, K.; Amarasiriwardena, C.; Jayawardene, I.; Lupoli, N.; Dinulescu, D. M.; Bonventre, J. V.; Mashelkar, R. A.; Sengupta, S.* Proc. Natl. Acad. Sci. USA, 2012, 109, 11294-11299.

​

2011:

 

9. “Rationally engineered polymeric cisplatin nanoparticles for improved antitumor efficacy” Paraskar, A.; Soni, S.; Basu, S.; Amarasiriwardena, C. J.; Lupoli, N.; Srivats, S.; Roy, R. S.; Sengupta, S. Nanotechnology. 2011, 22, 265101.

 

8. “Biology Oriented Synthesis of a Natural Product Inspired Oxepane Collection Yields a Novel Wnt Pathway Activator." Basu, S.§; Ellinger, B.§; Rizzo, S.; Deraeve, C.; Schürmann, M.; Preut, H.; Arndt, H. –D.; Waldmann, H. Proc. Natl. Acad. Sci. USA, 2011, 108, 6805-6810.

 

7. “Cancer, Signal Transduction and Nanotechnology." Sengupta, P.; Basu, S.*; Sengupta, S.* Current Drug Delivery, 2011, 8, 254-260.

 

2009:

 

6. “Nanoparticle-Mediated Targeting of phosphatidylinositol-3-Kinase Signaling Inhibits Angiogenesis."  Harfouche, R.§; Basu, S.§; Soni, S.; Hentschel, D. M.; Mashelkar, R. A.; Sengupta, S. Angiogenesis, 2009, 12, 325-338.

 

5. “Glycome and Transcriptomal Regulation of Vasculogenesis.” Harfouche, R.; Hentschel, D.; Piecewicz, S. M.; Basu, S.; Print, C.; Eavarone, D.; Kiziltepe, T.; Sasisekharan, R.; Sengupta, S. Circulation, 2009, 120, 1883-1892.

 

4. “Targeting Oncogenic Signaling Pathways by Exploiting Nanotechnology."  Basu, S.; Chaudhuri, P.; Sengupta, S. Cell Cycle, 2009, 21, 3480-3487.

 

3. “Nanoparticle-Mediated Targeting of MAPK Signaling Predisposes Tumor to Chemotherapy." Basu, S.§; Harfouche, R.§; Soni, S.;  Chimote, G.; Mashelkar, R. A.; Sengupta, S. Proc. Natl. Acad. Sci. USA, 2009, 106, 7957-7961.

 

2006:

 

2. “The Regioselectivity in the Formation of Small and Medium Sized Cyclic Ethers by Diene-Ene Ring Closing Metathesis."  Basu, S.; Waldmann, H.  J. Org. Chem., 2006, 71, 3977-3979.

 

2004:

 

1. “Compound Library Development Guided by Protein Structure Similarity Clustering and Natural Product Structure." Koch, M. A.; Wittenberg, L. –O.; Basu, S.; Jeyaraj, D. A.; Gourzoulidou, E.; Reinecke, K.; Odermatt, A.; Waldmann, H. Proc. Natl. Acad. Sci. USA, 2004, 101, 16721-16726.

 

         * Corresponding author      § Equal contribution

 

bottom of page